GCP300GENAIPROD

Generative AI in Production

In this course, you learn about the different challenges that arise when productionizing generative AI-powered applications versus traditional ML. You will learn how to manage experimentation and tuning of your LLMs, then you will discuss how to deploy, test, and maintain your LLM-powered applications. Finally, you will discuss best practices for logging and monitoring your LLM-powered applications in production.

Google Cloud
✓ Formation officielle Google CloudNiveau Advanced⏱️ 1 jour (7h)

Ce que vous allez apprendre

  • Describe the challenges in productionizing applications using generative AI.
  • Manage experimentation and evaluation for LLM-powered applications.
  • Productionize LLM-powered applications.
  • Implement logging and monitoring for LLM-powered applications.

Prérequis

  • Completion of "Introduction to Developer Efficiency on Google Cloud" or equivalent knowledge.

Public cible

  • Developers and machine learning engineers who wish to operationalize Gen AI-based applications

Programme de la Formation

4 modules pour maîtriser les fondamentaux

Objectifs

  • Understand generative AI operations
  • Compare traditional MLOps and GenAIOps
  • Analyze the components of an LLM system

Sujets abordés

  • →AI System Demo: Coffee on Wheels
  • →Traditional MLOps vs. GenAIOps
  • →Generative AI Operations
  • →Components of an LLM System

Quality Process

SFEIR Institute's commitment: an excellence approach to ensure the quality and success of all our training programs. Learn more about our quality approach

Teaching Methods Used
  • Lectures / Theoretical Slides — Presentation of concepts using visual aids (PowerPoint, PDF).
  • Technical Demonstration (Demos) — The instructor performs a task or procedure while students observe.
  • Guided Labs — Guided practical exercises on software, hardware, or technical environments.
  • Quiz / MCQ — Quick knowledge check (paper-based or digital via tools like Kahoot/Klaxoon).
Evaluation and Monitoring System

The achievement of training objectives is evaluated at multiple levels to ensure quality:

  • Continuous Knowledge Assessment : Verification of knowledge throughout the training via participatory methods (quizzes, practical exercises, case studies) under instructor supervision.
  • Progress Measurement : Comparative self-assessment system including an initial diagnostic to determine the starting level, followed by a final evaluation to validate skills development.
  • Quality Evaluation : End-of-session satisfaction questionnaire to measure the relevance and effectiveness of the training as perceived by participants.

Prochaines sessions

12 février 2026
Distanciel • Français
S'inscrire
9 mars 2026
Distanciel • Français
S'inscrire
7 avril 2026
Distanciel • Français
S'inscrire
4 juin 2026
Distanciel • Français
S'inscrire
7 août 2026
Distanciel • Français
S'inscrire
11 décembre 2026
Distanciel • Français
S'inscrire

700€ HT

par apprenant