[SF=1r] institute

GENAI200DEVAUGMENTE

Al-Augmented Developer

Get started with Google Agentspace: Al, LLMs, and Google Cloud
security to enhance enterprise search and secure data access.

2 jours /14h

Course overview
Accelerate Your Development Teams' Productivity with Agentic Coding

In today’'s competitive landscape, where speed and code quality make all the difference,
this course transforms your developers into Al-augmented developers, capable of
harnessing the power of the most advanced Al agents.

Focused on real-world use cases, this course emphasizes immediate value creation and

tangible productivity gains.

Participants leave with proven methods, workflows, and reusable assets directly

applicable to their enterprise projects.
Your teams will learn how to orchestrate and collaborate with intelligent agents to:

e Generate reliable, maintainable code

e Automate testing and documentation

e Accelerate refactoring and bug resolution

e Standardize Al-assisted development practices

The course covers the leading tools on the market, including Claude Code, Gemini CLI,
Gemini Code Assist, GitHub Copilot, Cursor Al, and more, and teaches participants how to
create their own custom business agents. Tool selection is regularly updated to reflect
the most relevant and mature solutions available.



By adopting this approach, your teams will evolve from “vibe coding” to a structured
agentic methodology, ensuring code quality, security, and maintainability while
drastically accelerating delivery.

At the end of the course, a final certification test validates the acquired skills and awards
the SFEIR Certified Al-Augmented Developer credential.

Learning methods
This course alternates between theory (slides and lectures), live demos, and hands-on
guided labs to ensure both understanding and practical mastery.

Learning outcomes
By the end of this training, participants will be able to:

e Accelerate every phase of the development lifecycle from architectural design to
complex bug resolution, increasing delivery velocity while ensuring code quality,
security, testing, documentation, and maintainability.

e Collaborate continuously with Al, adopting Al-augmented workflows that enhance
both productivity and efficiency.

e Master the ecosystem of leading Al coding tools and frameworks, including Claude
Code, Gemini CLI, GitHub Copilot, and Cursor Al while learning to evaluate and
integrate emerging tools by understanding their strengths and limitations.

e Transform a traditional development team into an Al-augmented team, by
orchestrating collaborative Al agents, establishing shared team standards (context
libraries, reusable prompts), and promoting best practices in Al-assisted
development that accelerate onboarding and streamline workflows.

In short: participants will leave the course able to build faster, better, and together, giving
their organization a true competitive edge.

Evaluation Methods
Learning objectives are assessed through the completion of guided practical labs,
supervised and validated by the certified instructor delivering the training session.

Target audience

e Software Engineers (backend and frontend), Software Architects, and Tech Leaders
working in enterprises, tech consultancies (ESNs), startups, or scale-ups who want to



boost their efficiency with Al while maintaining a high level of code quality.

e Development teams focused on maintainability, robustness, and best practices,
looking to leverage Al to modernize their workflows and improve the quality of their
deliverables.

Prerequisites

Knowledge

e Practical proficiency in at least one programming language (Python, JavaScript,
Java, C#, TypeScript, Go, etc.).
Daily experience with Git and a modern IDE (VS Code, Intellid, WebStorm, etc.).

Basic command-line and file editing skKills.
Team development experience: code reviews, collaborative workflows, version

control best practices.
Familiarity with generative Al and prompt engineering is a plus to maximize the

value of the training.

Required Tools

e A standard laptop (16 GB RAM recommended) with permission to install software.
A stable internet connection.A recent operating system (Windows 10+, macOS 10.15+,

or Linux).
Git installed and configured, with access to GitHub or GitLab.

A recent version of Node.js and npm installed and configured.
An IDE of choice (VS Code, IntelliJ, WebStorm, etc.).
Docker (optional but highly recommended) to take advantage of our automated

setup via DevContainer.

Course Outline
Day 1 — Fundamentals and Tools of Agentic Coding

Module 1: Introduction to Al for Developers

e Quick refresher on Al: history of Al / ML/ NLP / Generative Al and the rise of ChatGPT
and LLMs

e Market overview: GPT-5, Claude, Gemini — key differences

e The art of prompting: how to communicate effectively with Al to generate high-
quality code



e The evolution of tools: from single-prompt assistance to collaborative agents
e Context and tokens: understanding their constraints
e Tool landscape: ChatGPT, Claude, and others

Workshop:

e Prompt engineering lab: comparing three prompting strategies on a concrete
coding task

Module 2: Vibe Coding vs Agentic Coding

“Vibe Coding”: definition, limitations, and risks

“Agentic Coding”: the vision of the Al-augmented developer

Continuous collaboration vs. passive generation

Impact on code quality, maintainability, and documentation
Workshops:

e Setting up “vibe coding” tools
e Guided experiment: “vibe code” an app without reviewing the Al's code — analyze
results, constraints, and benefits

Module 3: Discovering and Practicing Agentic Coding

e Practical introduction: what Agentic Coding means for developers
e Live demo: traditional development vs. augmented development
e Quality focus: how Al improves code quality (conventions, patterns, best practices)

The Agentic workflow: Specify » Plan » Tasks » Implement » Validate

Managing context: building an effective local . md context file

Structuring requests and iterations

Best practices: documentation, testing, and quality assurance
Workshops:

e Scenario 1- Legacy project:
o Refactor an existing codebase to make it Agentic Coding compliant
o Build a migration plan
e Scenario 2 — Greenfield project:
o Architecture, technical choices, and structure
o Develop a complete feature using the Agentic workflow

Day 2 — Tools, Extensions, and MCP

Module 4: Evaluating, Comparing, and Combining Al Tools for Maximum Productivity



Token management and optimization

Next-generation IDEs (e.g., Cursor Al)

Practical comparison: which tool fits which use case?

Hybrid workflows: combining multiple Al assistants

Tool selection matrix: Al coding agents (GitHub Copilot, Claude Code, Open Code,
Gemini CLI) vs. LLM models (Sonnet, Gemini, etc.)

License and API| key management

Live demos and tool exploration

Module 5: Extensions and Model Context Protocol (MCP)

MCP concepts and architecture

Installing and using MCP clients (examples: Playwright, Context7, Atlassian
integrations)

Use case: MCP Playwright for enhanced test automation with live browser output

Claude Code deep dive: sub-agents, hooks, skills, and advanced features
Workshop:

e Install an MCP client and perform a complex interaction (e.g., screenshot capture +
automated test generation)

Module 6: Augmented Team Development

e Team standards: shared context and instruction files (e.g., AGENTS.md)

Shared conventions: defining team standards, plugins, Claude Code marketplace,
hooks, and configuration sharing

Agent security: environment management (.env isolation) and role-based
configuration

Sharing reusable prompts and patterns

Accelerated onboarding for new developers
Al-assisted code reviews

CI/CD integration and automation

Human-Agent-Team collaboration: assisted review and augmented pair
programming

Workshops:

Create multiple AGENTS.md files and define shared team contexts

Simulate a collaborative workflow: feature » code review » merge

Implement a Git workflow with agents (pre-commit hooks, automated reviews)

Multi-developer simulation: handle conflicts and resolution with Al agents



e Onboarding simulation: integrating a new developer assisted by Al

Module 7: Risks, Responsibilities, and Future Perspectives

e The importance of the human-in-the-loop approach

Maintaining traditional development skills, myth or real risk?

Tool dependency: risks and mitigation strategies

Security: reviewing Al-generated code, handling vulnerabilities, managing sensitive
data
Intellectual property and compliance issues

Ethics and responsibility of the Al-augmented developer
e Future outlook and emerging practices

Module 8: SFEIR Certified Al-Augmented Developer

e Online certification exam (multiple choice, 20 questions) covering all modules
e Passing score: 80% minimum



