
GENAI200DEVAUGMENTE

AI-Augmented Developer
Get started with Google Agentspace: AI, LLMs, and Google Cloud

security to enhance enterprise search and secure data access.

2 jours / 14h

Course overview

Accelerate Your Development Teams’ Productivity with Agentic Coding

In today’s competitive landscape, where speed and code quality make all the difference,

this course transforms your developers into AI-augmented developers, capable of

harnessing the power of the most advanced AI agents.

Focused on real-world use cases, this course emphasizes immediate value creation and

tangible productivity gains.

Participants leave with proven methods, workflows, and reusable assets directly

applicable to their enterprise projects.

Your teams will learn how to orchestrate and collaborate with intelligent agents to:

Generate reliable, maintainable code

Automate testing and documentation

Accelerate refactoring and bug resolution

Standardize AI-assisted development practices

The course covers the leading tools on the market, including Claude Code, Gemini CLI,

Gemini Code Assist, GitHub Copilot, Cursor AI, and more, and teaches participants how to

create their own custom business agents. Tool selection is regularly updated to reflect

the most relevant and mature solutions available.



By adopting this approach, your teams will evolve from “vibe coding” to a structured

agentic methodology, ensuring code quality, security, and maintainability while

drastically accelerating delivery.

At the end of the course, a final certification test validates the acquired skills and awards

the SFEIR Certified AI-Augmented Developer credential.

Learning methods

This course alternates between theory (slides and lectures), live demos, and hands-on

guided labs to ensure both understanding and practical mastery.

Learning outcomes

By the end of this training, participants will be able to:

Accelerate every phase of the development lifecycle from architectural design to

complex bug resolution, increasing delivery velocity while ensuring code quality,

security, testing, documentation, and maintainability.

Collaborate continuously with AI, adopting AI-augmented workflows that enhance

both productivity and efficiency.

Master the ecosystem of leading AI coding tools and frameworks, including Claude

Code, Gemini CLI, GitHub Copilot, and Cursor AI while learning to evaluate and

integrate emerging tools by understanding their strengths and limitations.

Transform a traditional development team into an AI-augmented team, by

orchestrating collaborative AI agents, establishing shared team standards (context

libraries, reusable prompts), and promoting best practices in AI-assisted

development that accelerate onboarding and streamline workflows.

In short: participants will leave the course able to build faster, better, and together, giving

their organization a true competitive edge.

Evaluation Methods

Learning objectives are assessed through the completion of guided practical labs,

supervised and validated by the certified instructor delivering the training session.

Target audience

Software Engineers (backend and frontend), Software Architects, and Tech Leaders

working in enterprises, tech consultancies (ESNs), startups, or scale-ups who want to



boost their efficiency with AI while maintaining a high level of code quality.

Development teams focused on maintainability, robustness, and best practices,

looking to leverage AI to modernize their workflows and improve the quality of their

deliverables.

Prerequisites
Knowledge

Practical proficiency in at least one programming language (Python, JavaScript,

Java, C#, TypeScript, Go, etc.).

Daily experience with Git and a modern IDE (VS Code, IntelliJ, WebStorm, etc.).

Basic command-line and file editing skills.

Team development experience: code reviews, collaborative workflows, version

control best practices.

Familiarity with generative AI and prompt engineering is a plus to maximize the

value of the training.

Required Tools

A standard laptop (16 GB RAM recommended) with permission to install software.

A stable internet connection.A recent operating system (Windows 10+, macOS 10.15+,

or Linux).

Git installed and configured, with access to GitHub or GitLab.

A recent version of Node.js and npm installed and configured.

An IDE of choice (VS Code, IntelliJ, WebStorm, etc.).

Docker (optional but highly recommended) to take advantage of our automated

setup via DevContainer.

Course Outline
Day 1 – Fundamentals and Tools of Agentic Coding

Module 1: Introduction to AI for Developers

Quick refresher on AI: history of AI / ML / NLP / Generative AI and the rise of ChatGPT

and LLMs

Market overview: GPT-5, Claude, Gemini — key differences

The art of prompting: how to communicate effectively with AI to generate high-

quality code



The evolution of tools: from single-prompt assistance to collaborative agents

Context and tokens: understanding their constraints

Tool landscape: ChatGPT, Claude, and others

Workshop:

Prompt engineering lab: comparing three prompting strategies on a concrete

coding task

Module 2: Vibe Coding vs Agentic Coding

“Vibe Coding”: definition, limitations, and risks

“Agentic Coding”: the vision of the AI-augmented developer

Continuous collaboration vs. passive generation

Impact on code quality, maintainability, and documentation

Workshops:

Setting up “vibe coding” tools

Guided experiment: “vibe code” an app without reviewing the AI’s code — analyze

results, constraints, and benefits

Module 3: Discovering and Practicing Agentic Coding

Practical introduction: what Agentic Coding means for developers

Live demo: traditional development vs. augmented development

Quality focus: how AI improves code quality (conventions, patterns, best practices)

The Agentic workflow: Specify → Plan → Tasks → Implement → Validate

Managing context: building an effective local .md context file

Structuring requests and iterations

Best practices: documentation, testing, and quality assurance

Workshops:

Scenario 1 – Legacy project:

Refactor an existing codebase to make it Agentic Coding compliant

Build a migration plan

Scenario 2 – Greenfield project:

Architecture, technical choices, and structure

Develop a complete feature using the Agentic workflow

Day 2 – Tools, Extensions, and MCP

Module 4: Evaluating, Comparing, and Combining AI Tools for Maximum Productivity



Token management and optimization

Next-generation IDEs (e.g., Cursor AI)

Practical comparison: which tool fits which use case?

Hybrid workflows: combining multiple AI assistants

Tool selection matrix: AI coding agents (GitHub Copilot, Claude Code, Open Code,

Gemini CLI) vs. LLM models (Sonnet, Gemini, etc.)

License and API key management

Live demos and tool exploration

Module 5: Extensions and Model Context Protocol (MCP)

MCP concepts and architecture

Installing and using MCP clients (examples: Playwright, Context7, Atlassian

integrations)

Use case: MCP Playwright for enhanced test automation with live browser output

Claude Code deep dive: sub-agents, hooks, skills, and advanced features

Workshop:

Install an MCP client and perform a complex interaction (e.g., screenshot capture +

automated test generation)

Module 6: Augmented Team Development

Team standards: shared context and instruction files (e.g., AGENTS.md)

Shared conventions: defining team standards, plugins, Claude Code marketplace,

hooks, and configuration sharing

Agent security: environment management (.env isolation) and role-based

configuration

Sharing reusable prompts and patterns

Accelerated onboarding for new developers

AI-assisted code reviews

CI/CD integration and automation

Human-Agent-Team collaboration: assisted review and augmented pair

programming

Workshops:

Create multiple AGENTS.md files and define shared team contexts

Simulate a collaborative workflow: feature → code review → merge

Implement a Git workflow with agents (pre-commit hooks, automated reviews)

Multi-developer simulation: handle conflicts and resolution with AI agents



Onboarding simulation: integrating a new developer assisted by AI

Module 7: Risks, Responsibilities, and Future Perspectives

The importance of the human-in-the-loop approach

Maintaining traditional development skills, myth or real risk?

Tool dependency: risks and mitigation strategies

Security: reviewing AI-generated code, handling vulnerabilities, managing sensitive

data

Intellectual property and compliance issues

Ethics and responsibility of the AI-augmented developer

Future outlook and emerging practices

Module 8: SFEIR Certified AI-Augmented Developer

Online certification exam (multiple choice, 20 questions) covering all modules

Passing score: 80% minimum


