GCP200DE

Data Engineering on Google Cloud

Get hands-on experience designing and building data processing systems on Google Cloud. This course uses lectures, demos, and hands-on labs to show you how to design data processing systems, build end-to-end data pipelines, and analyze data. This course covers structured, unstructured, and streaming data.

Google Cloud
✓ Formation officielle Google CloudNiveau Intermediate⏱️ 4 jours (28h)

Ce que vous allez apprendre

  • Design and build data processing systems on Google Cloud.
  • Process batch and streaming data by implementing autoscaling data pipelines on Dataflow.
  • Derive business insights from extremely large datasets using BigQuery.
  • Leverage unstructured data using Spark and ML APIs on Dataproc.
  • Enable instant insights from streaming data.

Prérequis

  • Prior Google Cloud experience using Cloud Shell and accessing products from the Google Cloud console.
  • Basic proficiency with a common query language such as SQL.
  • Experience with data modeling and ETL (extract, transform, load) activities.
  • Experience developing applications using a common programming language such as Python.

Public cible

  • Data engineers, Database administrators, System administrators

Programme de la Formation

18 modules pour maîtriser les fondamentaux

Objectifs

  • Explain the role of a data engineer.
  • Understand the differences between a data source and a data sink.
  • Explain the different types of data formats.
  • Explain the storage solution options on Google Cloud.
  • Learn about the metadata management options on Google Cloud.
  • Understand how to share datasets with ease using Analytics Hub.
  • Understand how to load data into BigQuery using the Google Cloud console and/or the gcloud CLI.

Sujets abordés

  • →The role of a data engineer
  • →Data sources versus data syncs
  • →Data formats
  • →Storage solution options on Google Cloud
  • →Metadata management options on Google Cloud
  • →Share datasets using Analytics Hub

Activités

Lab: Loading Data into BigQuery

Quality Process

SFEIR Institute's commitment: an excellence approach to ensure the quality and success of all our training programs. Learn more about our quality approach

Teaching Methods Used
  • Lectures / Theoretical Slides — Presentation of concepts using visual aids (PowerPoint, PDF).
  • Technical Demonstration (Demos) — The instructor performs a task or procedure while students observe.
  • Guided Labs — Guided practical exercises on software, hardware, or technical environments.
  • Quiz / MCQ — Quick knowledge check (paper-based or digital via tools like Kahoot/Klaxoon).
Evaluation and Monitoring System

The achievement of training objectives is evaluated at multiple levels to ensure quality:

  • Continuous Knowledge Assessment : Verification of knowledge throughout the training via participatory methods (quizzes, practical exercises, case studies) under instructor supervision.
  • Progress Measurement : Comparative self-assessment system including an initial diagnostic to determine the starting level, followed by a final evaluation to validate skills development.
  • Quality Evaluation : End-of-session satisfaction questionnaire to measure the relevance and effectiveness of the training as perceived by participants.

Prochaines sessions

9 février 2026
Distanciel • Français
S'inscrire
27 avril 2026
Distanciel • Français
S'inscrire
29 juin 2026
Distanciel • Français
S'inscrire
31 août 2026
Distanciel • Français
S'inscrire
26 octobre 2026
Distanciel • Français
S'inscrire
14 décembre 2026
Distanciel • Français
S'inscrire

2 800€ HT

par apprenant